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Abstract

The physiological and biochemical mechanisms on boron (B)-induced alleviation of alumi-
num (B)-toxicity in plants have been examined in some details, but our understanding of the
molecular mechanisms underlying these processes is very limited. In this study, we first
used the cDNA-AFLP to investigate the gene expression patterns in Citrus grandis roots re-
sponsive to B and Al interactions, and isolated 100 differentially expressed genes. Results
showed that genes related to detoxification of reactive oxygen species (ROS) and alde-
hydes (i.e., glutathione S-transferase zeta class-like isoform X1, thioredoxin M-type 4, and
2-alkenal reductase (NADP*-dependent)-like), metabolism (i.e., carboxylesterases and leci-
thin-cholesterol acyltransferase-like 4-like, nicotianamine aminotransferase A-like isoform
X3, thiosulfate sulfurtransferase 18-like isoform X1, and FNR, root isozyme 2), cell transport
(i.e., non-specific lipid-transfer protein-like protein At2g13820-like and major facilitator su-
perfamily protein), Ca signal and hormone (i.e., calcium-binding protein CML19-like and
IAA-amino acid hydrolase ILR1-like 4-like), gene regulation (i.e., Gag-pol polyprotein) and
cell wall modification (i.e., glycosy! hydrolase family 10 protein) might play a role in B-in-
duced alleviation of Al-toxicity. Our results are useful not only for our understanding of mo-
lecular processes associated with B-induced alleviation of Al-toxicity, but also for obtaining
key molecular genes to enhance Al-tolerance of plants in the future.

Introduction

Aluminum (Al) is the most abundant metal and the third abundant element in earth’s crust
after oxygen and silicon [1]. Al-toxicity is a major limiting factor for crop production in many
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acidic soils throughout the tropics and subtropics. Al-toxicity can inhibit the root growth
which is the primary symptom of Al injury [2] through inhibiting root cell expansion and
elongation.

Boron (B), as an essential element required for normal growth and development of higher
plants, is absorbed from soil solution by plant roots mainly in the form of boron acid. B can al-
leviate Al-toxicity in many plants including lisianthus (Eustoma grandiflorum) [3], squash
(Cucurbita pepo) [4], alfalfa (Medicago sativa) [5], Citrus grandis [6], flax (Linum usitatissi-
mum) [7], pea (Pisum sativum [8], common bean (Phaseolus vulgaris) [9], sunflower
(Helianthus annuus) [10], soybean (Glycine max) [11], apple (Malus sp.) rootstocks [12], cu-
cumber (Cucumis sativus), maize (Zea mays) [13] and wheat (Triticum aestivum) [14].

B-deficiency is a widespread problem in many agricultural crops, including citrus [15]. Like
Al-toxicity, B-deficiency also primarily inhibits root growth through limiting cell elongation
rather than cell division [16]. In addition, Al is likely to be present as AI(OH);, which is struc-
turally similar to B(OH)j; [2]. Previous study showed that B-deficiency- or Al-toxicity-induced
inhibition of root growth in squash plants could be a consequence of an impaired ascorbate
(ASA) metabolism [17]. Based on the similarities of the molecules and of the symptom charac-
teristic for Al-toxic and B-deficient plants, Blevins and Lukaszewski [18] proposed that Al-tox-
icity might exert its toxic effect by inducing B-deficiency. However, our studies with C. grandis
seedlings showed that Al-toxicity increased or did not affect B concentration of roots, stems
and leaves, demonstrating that the Al-induced growth inhibition was not caused by Al-induced
B-deficiency [6]. It has been known that the primary function of B is related to the formation
of primary cell walls, where it cross-links with the pectic polypectic polysaccharide rhamnoga-
lacturonan II (RG-II). A higher degree of cross-linked RGII may contribute to a more stable
network of cell walls with reduced pore sizes [19], thus preventing Al from getting into contact
with sensitive targets at the plasma membrane and/or symplasm [13]. In addition, it has been
suggested that B reduces the binding sites for Al in cell walls, thus ameliorating Al-toxicity
[8,9]. Jiang et al. [6] showed that the antagonistic actions of B against inhibitory effects of Al-
toxicity on C. grandis root growth was probably due to Al-induced alteration in Al speciation
and/or sub-cellular compartmentation, and that B-induced alleviation of shoot and photosyn-
thesis could be due to less accumulation in shoots. Corrales et al. [13] observed that B mitigated
Al-induced damage of cell integrity in root tips, possibly through stimulating antioxidant re-
sponses in Al-stressed roots. Ruiz et al. [10] suggested that glutathione metabolism was one of
the key processes for Al detoxification in sunflower. Recent study with flax showed that B de-
creased root activities of enzymes (i.e., phenylalanine ammonia-lyase, polyphenol oxidase and
peroxidase) involved in phenolic compounds, and root concentrations of lignin and wall-
bound phenols under Al-stress, thereby ameliorating Al-toxicity [7]. To conclude, the physio-
logical and biochemical mechanisms on B-induced alleviation of Al-toxicity in plants have
been examined in some details, our understanding of the molecular mechanisms underlying
these processes is very limited.

Gene expression analyses offer us the opportunity to understand the molecular mecha-
nisms involved in B-induced alleviation of plant Al-toxicity. Extensive research has shown
that Al-toxicity affects the transcript levels of root genes associated with organic acid (OA)
metabolism, OA transport and secretion, glycolytic pathways, carbohydrate and energy me-
tabolism, cell wall modification, oxidative stress, protein metabolism, immobilization of Al
by phosphate, signaling and hormones, gene regulation, cell death and senescence, and stress
response [20-29]. Also, the effects of B-deficiency on root gene expression have been investi-
gated by some workers [30-32]. However, very limited data are available on the differential
expression of genes in response to B and Al interactions in plants.
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Citrus belong to evergreen subtropical fruit trees cultivated in humid and subhumid tropi-
cal, subtropical and temperate regions of the world mainly on acidic soils. In China, high Al
and low B are common in citrus plantations [6,33]. Although we investigated the effects of B
and Al on citrus growth, the concentrations of B and Al in roots, stems and leaves, root and
leaf OA metabolism, leaf photosynthesis and photosystem II photochemistry [6,34], there is
hardly any information on the changes in gene expression of citrus roots in response to B and
Al interactions. In this study, we investigated the effects of B and Al interactions on C. grandis
growth, B and Al concentration in roots, and expression of root genes revealed by cDNA-am-
plified fragment length polymorphism (cDNA-AFLP). The objectives of this study were to un-
derstand the molecular mechanisms on B-induced alleviation of Al-toxicity in plants and to
identify differentially expressed genes, which might contribute to B-induced alleviation of
Al-toxicity.

Materials and Methods
Plant culture, B and Al treatments and sampling

This study was conducted from February to December, 2012 at Fujian Agriculture and Forestry
University (FAFU), Fuzhou, China. Plant culture, treatments and sampling were performed ac-
cording to Jiang et al. [6]. Briefly, 5-week-old seedlings of ‘Sour pummelo’ [Citrus grandis (L.)
Osbeck] were transplanted to a 6 L pots (two plants per pot) containing fine river sand and
grown in a greenhouse under natural photoperiod at FAFU. Six weeks after transplanting,
seedlings were supplied with nutrient solution containing two B (i.e., 2.5 and 20 uM H;BO3) x
two Al [i.e., 0 (-Al) and 1.2 mM AICl;-6 H,O (+Al)] levels. The nutrient solution was formulat-
ed with macronutrients (in mM): KNO3, 1; Ca(NOs3),,1; KH,PO,, 0.1; and MgSOy, 0.5; and mi-
cronutrients (in pM): MnCl,, 2; ZnSOy, 2; CuSOy, 0.5; (NH4)sM0,0,4, 0.065; and Fe-EDTA,
20. The pH of the nutrient solution was adjusted to 4.1-4.2 using HCI or NaOH solution.
There were 20 pots per treatment in a completely randomized design. Eighteen weeks after the
beginning of B and Al treatments, approx. 5-mm-long root apices from new white roots were
excised, immediately frozen in liquid N, and stored at —80°C until extraction. The remaining
seedlings that were not sampled were used to measure dry weight (DW), B and Al concentra-
tions in roots.

Plant DW, B and Al concentrations in roots

Ten plants per treatment from different replications were harvested and divided into their
parts (shoots and roots). The plant parts were dried at 70°C for 48 h and DW were measured.

For the determination of B and Al fibrous roots were collected and dried. B was assayed by
the modified curcumin method [35] after samples were ashed at 500°C for 5 h, and dissolved
in 0.1 M HCI. Al was assayed by the aluminon method [36] after samples were digested in a
mixture of HNO5: HCIO, (5:1 v/v).

Collection of root exudates and determination of malate and citrate in
exudates

Root exudates were collected according to Yang et al. [37]. Briefly, 18 weeks after the beginning
of B and Al treatments, ten to twelve approx. 5-mm-long root apices from new white roots
were excised, then collected in Petri dishes containing 5 mL control solution (0.5 mM CaCl,,
pH 4.1-4.2). After three rinses with 5 mL control solution (each for 20 min), the root apices
were transferred to 2 mL centrifuge tubes containing 1 mL control solution in the absence or
presence of 0.5 mM AICl;-6H,0 (pH 4.1-4.2). The tubes were placed vertically on a shaker
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(200 rpm) at dark. The treatment times for malate and citrate collection were 12 and 24 h, re-
spectively. Malate and citrate in exudates were assayed by enzymatic method [37].

RNA extraction, cDNA synthesis and cDNA-AFLP analysis

Root tips of six plants from different pots were mixed as a biological replicate. Equal amounts
of root tips were collected from each plant. There were three biological replicates for each treat-
ment (total of 18 plants from 18 pots). Total RNA were independently extracted three times
from four B and Al combinations using Recalcirtant Plant Total RNA Extraction Kit (Centrifu-
gal column type, Bioteke Corporation, China) according to manufacturer’s instructions. cDNA
synthesis and cDNA-AFLP analysis were performed according to Zhou et al. [38].

Quantitative RT-PCR (gRT-PCR) analysis

Total RNA extracted as described above was used for qRT-PCR analysis, which was performed
according to Zhou et al. [38]. The primers of candidate TDFs were listed in S1 Table.

Experimental design and statistical analysis

There were 20 pots (40 seedlings) per treatment in a completely randomized design. Experi-
ments were performed with 3-10 replicates. Results represented the means * SE. Differences
among four treatments were analyzed by two x two ANOVA. Means were separated by the
Duncan's new multiple range test at P < 0.05 level.

Results

Effects of B and Al interactions on seedling growth, Al and B
concentrations in roots

In non-Al-treated (-Al) seedlings, root DW, shoot DW and root DW/shoot DW ratio did not
significantly change in response to B supply. In Al-treated (+Al) seedlings, both root DW and
shoot DW were higher under 20 uM B than under 2.5uM B, while root DW/shoot DW ratio
was lower under 20 uM B. Al decreased root DW and shoot DW except for a similar root DW
between Al treatments under 20 uM B, and increased root DW/shoot DW ratio (Fig. 1A-C).

Al increased root Al concentration, whereas B did not significantly affect root Al concentra-
tion (Fig. 1D). B supply increased root B concentration. B concentration was higher in +Al
roots than in —Al roots under 2.5 uM B, while B concentration in 20 uM B-treated roots did
not differ between the two Al treatments (Fig. 1E).

Effects of B and Al interactions on Al-induced secretion of malate and
citrate from roots
B supply did not significantly affect Al-induced secretion of malate and citrate from +Al ex-

cised or —Al excised roots. Al-induced secretion of malate and citrate from +Al excised roots
was higher than from —Al excised roots (Fig. 2).

Identification of root differentially expressed genes and their expression
patterns under B-Al interactions

We used a total of 256 selective primer combinations for cDNA-AFLP analysis in order to isolate
the differentially expressed transcript-derived fragments (TDFs) responsive to B and Al interac-
tions. In this study, approx. 5970 clear and unambiguous TDFs were amplified, with an average
of 29.5 (7-52) TDFs for each primer combination. A total of 169 differentially expressed and
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Fig 1. Effects of B-Al interactions on root DW (A), shoot DW (B), root DW/shoot DW ratio (C), root Al
(D) and B (E) concentrations in C. grandis seedlings. Data are means + SE (n = 10 except for 5 for root Al
and B concentrations DW). Differences among four treatments were analyzed by 2 (B levels) x 2 (Al levels)
ANOVA. Different letters indicate a significant difference at P < 0.05.

doi:10.1371/journal.pone.0115485.9001
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Fig 2. Al-induced-secretion of malate (A and C) and citrate (B and D) by excised from C. grandis
seedlings treated with different B and Al levels. Malate and citrate secretion from excised roots were
measured after 12 or 24 h treatment, respectively in 0.5 mM CaCl, + 0.5 mM AICl3-6H,0 (A and B) or 0.5 mM
CaCl, solution (C and D), pH 4.1-4.2. Bars represent means + SE (n = 4). Differences among four treatments
were analyzed by 2 (B levels) x 2 (Al levels) ANOVA. Different letters indicate a significant difference at P <
0.05.

doi:10.1371/journal.pone.0115485.9002

reproducible TDFs were obtained. All these TDFs were reamplified, cloned and sequenced, and
142 cDNA fragments produced useable sequence data. Homology analyses were conducted
using BLAST from GenBank. Among these TDFs, 89 TDFs showed significant homology to
genes encoding known or putative proteins; 11 TDFs were homologus to genes encoding
uncharacterized and hypothetical proteins; and the remaining 42 TDFs did not show homologus
to any nucleotide or amino sequence in the public databases. These TDFs were associated with
metabolism (21), stress response (10), autophagy and senescence (15), signal transduction and
hormone (12), gene regulation (15), cell transport (12), cell wall modification (4) and others
(11). Further analysis showed that in 2.5 (20) pM B-treated roots, 25 (35) TDFs were upregulated
by Al-toxicity, and 36 (29) TDFs were downregulated by Al-toxicity; and in —Al (+Al) roots, the
expression levels of 22 (30) TDFs increased and 36 (22) TDFs decreased as B supply increased
from 2.5 to 20 uM. Obviously, B-Al interaction affected root gene expression (Tables 1 and 2).

Validation of cDNA-AFLP data

To validate the reliabiability of cDNA-AFLP expression patterns, 13 TDFs were selected for
qRT-PCR analysis. Among these TDFs, 11 TDFs (i.e., TDFs #19-3, 54-2, 60-1, 83-2, 87-7, 157-
6,162-5,178-4, 219-2, 219-3 and 243-1) matched well with the expression profiles observed
with cDNA-AFLP (Fig. 3). This technique was thus validated in 84.7% of cases. In addition, a
linear regression analysis between qQRT-PCR results and cDNA-AFLP data was performed. The
correlation coefficient (r) was 0.8501, demonstrating that the gPCR and cDNA-AFLP results
were highly correlated (S2 Fig.). It is worth noting that 5-3"exoribonuclease 3-like isoform X2
(TDF #162-5) was not included in the analysis because the TDF was detected only in 2.5 pM

B + 1.2 mM Al-treated roots.
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Table 2. Summary of differentially expressed TDFs in roots from Citrus grandis seedlings treated with two B (2.5 and 20 pM H;BO3) and two Al
(0 and 1.2 mM AICI;-6H,0) level.

Total differentially expressed TDFs Al-toxicity-responsive TDFs 20 uM B-responsive TDFs
25uMB 20 uM B 0 mM Al 1.2 mM Al
Up Down Up Down Up Down Up Down
Metabolism 21 4 10 10 4 2 13 5 4
Stress response 10 B 3 7 1 1 5) B 0
Autophagy and senescence 15 2 5 3 9 6 2 6 4
Signal transduction and hormone 12 2 6 1 3 8 4 4 8
Gene regulation 15 5 5 4 3 3 5 4 5
Cell transport 12 4 2 4 5 4 2 4 8
Cell wall modification 4 1 2 1 1 0 2 1 2
Others 11 4 3 5 3 3 3 3 1
Total 100 25 36 35 29 22 36 30 22

doi:10.1371/journal.pone.0115485.t002

Discussion
B-induced amelioration of Al-toxicity in C. grandis

Our results showed that the effects of Al-toxicity on root DW, shoot DW and root DW/shoot
DW ratio was less pronounced under 20 pM B than under 2.5 pM B (Fig. 1A-C), demonstrat-
ing that B alleviated Al-toxicity in C. grandis seedlings. Our data and previous study showed

that Al-toxicity increased or did not affect B concentration in roots (Fig. 1E), stems and leaves

3.2 15 15
A: 19-3 B -Al D: 83-2 a G: 134-5
2.4 - o + 1.2 mM Al a a
a a |10} 10 | b
16 F . L a ™M
05 0.5

08| l I b b c ﬁ
s00 s 00 1353 0.0 B 4576 a | 174 4 G219 a
» a T 28 | a a a 4
o - a - a 3 =
° 4t a 2| 1.0
g 21r 2 |
o b b n
e 2f ' 1} . t4r b b 05 b b Lo b
sl . (all N
©

- C: 60-1 a 4 F: 87-7 a l: 162-5 K: 219-2 a M: 243-1 a

Rl T - a - | a T

I s | a 3.0 2.4 a
2.1 3| o
b b 6k .
14 2 L
b b b b 4+ 1.5 b p b o8 L b
i tmll B0 el ae IR0 EOPTH
0.0 0 ol mm = 0.0
2.5 20 2.5 20 25 20 25 20 2.5 20

B supply to seedlings (uM)

Fig 3. Relative expression levels of 13 genes in roots from C. grandis seedlings treated with different B and Al levels. (A) Protein transport protein
Sec61 subunit alpha-like (TDF #19-3); (B) 40S ribosomal protein S2 (TDF #54-2); (C) Thioredoxin M-type 4 (TDF #60-1); (D) RRNA intron-encoded homing
endonuclease (TDF #83-2); (E) Dehydration responsive protein (TDF #83-5); (F) WD repeat-containing protein 26-like isoform X1 (TDF #87-7); (G) Ras-
related protein RABA1{-like (TDF #134-5); (H) Flavonol synthase/flavanone 3-hydroxylase-like (TDF #157-6); (I) 5'-3' exoribonuclease 3-like isoform X2
(TDF #162-5); (J) Thiosulfate sulfurtransferase 18-like isoform X1 (TDF #178-4); (K) Putative senescence-associated protein (TDF #219-2); (L) Adenine
nucleotide alpha hydrolases-like superfamily protein (TDF #219-3) and (M) 2-alkenal reductase (NADP™- dependent)-like (TDF #243-1). Bars represent
means + SE (n = 4). Samples for gRT-PCR were run in at least three biological replicates with two technical replicates. Relative gene expression was
calculated using ddCt algorithm. For the normalization of gene, citrus actin (GU911361.1) was used as an internal standard and the roots from 2.5 yM B + 0
mM Al-treated plants was used as reference sample, which was set to 1. Differences among four treatments were analyzed by 2 (B levels) x 2 (Al levels)
ANOVA. Different letters indicate a significant difference at P < 0.05.

doi:10.1371/journal.pone.0115485.9003
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[6], meaning that B-induced mitigation of Al-toxicity was not caused by an increase in plant B
concentration, as previously obtained on C. grandis [6], flax [7] and soybean [39]. Al-induced
secretion of OA anions from roots has been known to be a major mechanism of Al-tolerance
in plants [40]. Our results showed that Al-induced secretion of malate and citrate from +Al or
-Al excised roots was not affected by B supply (Fig. 2), indicating that B-induced alleviation of
Al-toxicity was not explained in this way. Al-tolerance of plants is associated not only with low
Al uptake, but also with relatively little Al translocation from roots to shoots [37,41]. In +Al
seedlings, root Al concentration did not differ between two B treatments (Fig. 1D), while B sup-
ply decreased stem and leaf Al concentration [6], meaning that relatively less amount of Al was
transported from roots to leaves (shoots). This might contribute to B-induced alleviation of Al-
toxicity in C. grandis seedlings.

Genes related to metabolism

Twenty one TDFs involved in metabolism were altered by B and Al interactions (Tables 1 and
2). Phenolic compounds particularly flavonoid type phenolics have been shown to confer plant
Al-tolerance via the dual mechanisms of antioxidation and Al chelation [40]. Tolra et al. [42]
showed that root concentrations of caffeic acid, catechol and catechin were higher in Al-toler-
ant maize cultivar than in sensitive cultivar. Our finding that the expression of two genes [i.e.,
flavonol synthase/flavanone 3-hydroxylase-like (TDF #157-6) and flavanone 3 hydroxylase-like
protein (TDF #134-14)] involved in flavonoid biosynthesis was induced by Al-toxicity except
for similar root expression level of gene encoding lavanone 3 hydroxylase-like protein between
two Al-treatments under 20 uM B (Table 1). This indicated that Al-toxicity might upregulate
root biosynthesis of flavonoids, thus enhancing plant Al-tolerance. However, B-induced allevi-
ation of Al-toxicity could not be explained by this way, because the expression levels of the two
genes in Al-treated roots were not higher under 20 pM B than under 2.5 uM B (Table 1).

Four differentially expressed TDFs (i.e., TDFs #149-2, 216-2, 250-3 and 51-12) involved in
lipid metabolism were isolated from roots (Table 1), demonstrating that B and Al interactions
might alter root lipid metabolism. Carboxylesterases, which hydrolyze esters of short-chain
fatty acids, play roles in plant defense, development, and secondary metabolism [43]. Our re-
sults showed that root expression of probable carboxylesterase 12-like (TDF #149-2) and car-
boxylesterase 1-like (TDF #216-2) kept unchanged and decreased in response to Al-toxicity
under 2.5 uM B, respectively, but increased under 20 uM B, and that their expression level in
Al-treated roots were higher under 20 pM B than under 2.5 pM B (TDF #149-2) or similar be-
tween the two B-treatments (TDF #216-2) depending on TDFs. The acylation of sterols has
been thought to play a key role in maintaining free sterol homeostasis in the cell membranes.
In Arabidopsis, sterol ester formation is catalyzed by phospholipid:sterol acyltransferase
(PSAT), which displays homology with the mammalian lecithin-cholesterol acyltransferase
(LCAT) [44]. Bouvier-Navé et al. [45] showed that the concentration of sterol esters decreased
in leaves of Arabidopsis psat] mutants accompanied by an early leaf senescence phenotype,
demonstrating the involvement of PSAT1I in plant sterol homeostasis and leaf senescence. We
found that root expression of gene encoding lecithin-cholesterol acyltransferase-like 4-like
(TDF #250-3) in Al-treated roots decreased under 2.5 uM B, and kept unchanged under 20 uM
B, and that its expression level in +Al roots was higher under 20 uM B than under 2.5 uyM B
(Table 1). The observed higher expression levels of genes encoding carboxylesterases and leci-
thin-cholesterol acyltransferase-like 4-like in 20 uM B + 1.2 mM Al-treated roots might con-
tribute to the Al-tolerance of plants grown under 20 uM B.

As shown in Table 1, 10 TDFs (i.e., TDFs #136-3, 141-5, 87-2, 138-5, 138-3, 134-12, 18-2,
178-4, 54-2 and 80-2) related to amino acid and protein metabolism was altered by B and Al
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interactions. Adenosylhomocysteinase, which catalyzes the reversible hydrolysis of S-adenosyl-
L-homocysteine (SAH, a strong inhibitor of transmethylation) to adenosine and L-homocyste-
ine, is essential for maintaining the methyl cycling by the removal of SAH [46]. Zhao et al. [47]
showed that 0.005 mM sodium nitroprusside (SNP) ameliorated Cd-induced toxicity in rice
(Oryza sativa) and increased the abundance of adenosylhomocysteinase-like in Cd-treated rice
roots. Our results showed that root expression of adenosylhomocysteinase-like (TDF #136-3)
remained unchanged in response to Al-toxicity under 2.5 uM B and greatly increased under

20 uM B, and that its expression level in +Al roots was higher under 20 uM B than under

2.5 uM B (Table 1). Thus, adenosylhomocysteinase-like might play a role in B-induced allevia-
tion of Al-toxicity. In addition, B and Al interactions also affected root expression of gene en-
coding S-adenosylmethionine-dependent methyltransferase At5g37990-like (TDF #141-5),
which is involved in a variety of methylation reactions, and of gene encoding phosphomethyl-
pyrimidine synthase (TDF, #87-2), which catalyzes the synthesis of 4-amino-2-methyl-5-phos-
phomethylpyrimidine from aminoimidazole ribotide in a radical S-adenosyl-L-methionine-
dependent reaction (Table 1).

Nicotianamine (NA) aminotransferase (NAAT) plays a key role in the synthesis of mugineic
acid family phytosiderophores (MAs) in graminaceous plants through catalyzing the amino
group transfer of NA [48]. Takahashi et al. [49] showed that introduction of the barley NAAT
gene into the nongraminaceous plant tobacco (Nicotiana tabacum), which produces NA but
not phytosiderophores, caused a shortage of NA and decreases in the concentrations of Cu, Fe
and Zn in leaves and floral organs of transgenic plants, indicating a role for NA in long-dis-
tance translocation of these metals. The Al-induced upregulation of root gene encoding nico-
tianamine aminotransferase A-like isoform X3 (TDF #138-5, Table 1) might contribute to Al-
tolerance of plants by reducing Al concentration in stems and leaves. However, increased bio-
synthesis of NA in Arabidopsis and tobacco enhanced the tolerance of plants to high levels of
metals [50].

LL-diaminopimelate aminotransferase is an enzyme involved in meso-diaminopimelate, a
precursor of cell wall peptidoglycan and 1-lysine in plants [51]. Tyrosine transaminase (also
known as tyrosine aminotransferase) catalyzes the conversion of tyrosine to 4-hydroxyphenyl-
pyruvic acid, a precursor for homogenetisic acid, plastoquinones and tocopherols, the latter of
which function as radical scavengers and protect the plants against various stresses [52]. In this
study, we first observed that root expression levels of genes encoding LL-diaminopimelate ami-
notransferase (TDF #138-3) and tyrosine transaminase family protein (TDF #134-12) kept un-
changed in response to Al-toxicity under 2.5 uM B and decreased by Al-toxicity under 20 uM
B (Table 1). It is unclear whether the two genes play a role in B-induced alleviation of Al-toxici-
ty. Further studies are needed to answer this question.

Thiosulfate sulfurtransferase, which catalyzes the cyanide-dependent cleavage of thiosulfate
to form thiocyanate and sulfite, is involved in sulfur metabolism, removal of cyanide, regula-
tion of redox homeostasis, protection against biotic and abiotic stresses [53]. In this study, we
observed that root expression of thiosulfate sulfurtransferase 18-like isoform X1 (TDFs #18-2
and 178-4) decreased in response to Al-toxicity under 2.5 pM B, but increased under 20 uM B
(Table 1). This implied that the gene might be involved in B-induced alleviation of Al-toxicity.

As shown in Table 1, five TDFs (i.e., TDFs #201-1, 25-4, 29-2,134-9 and 51-9) related to en-
ergy and carbohydrate metabolism were altered by B and Al interactions. Onda et al. [54] pro-
posed that the interaction of root ferredoxin (Fd)-NADP reductase (FNR) with FD III played a
key role in the efficient electron allocations from NADPH to Fd-dependent metabolism in root
plastids. We found that root expression of gene encoding FNR, root isozyme 2 (TDF #201-1)
upregulated in response to Al-toxicity under 20 uM B, which might be an adaptive response of
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plants to Al-toxicity. However, the abundance of ENR in Lotus corniculatus roots decreased in
response to Al-toxicity [55].

Genes related to stress response

Al-induced overproduction of reactive oxygen species (ROS) and lipid peroxidation have been
observed in the roots of many plants including triticale [56], potato (Solanum tuberosum) [57],
wheat [58], Plantago algarbiensis [59] and soybean [60]. To cope with the oxidative damage,
plant cells are equipped with a scavenging system composed of antioxidants and antioxidant
enzymes. Al-induced increases in both protein levels (activities) and expression levels of anti-
oxidant enzyme genes have been reported in the roots of rice [61], triticale [56] and wheat [25].
Xu et al. [58] showed that Al treatment increased root activities of antioxidant enzymes, as well
as the concentrations of antioxidants [i.e., AsA and reduced glutathione (GSH)] in two wheat
genotypes: Yangmai-5 (Al-sensitive) and Jian-864 (Al-tolerant), and that Al-treated Jian-864
root tips had higher total antioxidant capacity and lower lipid peroxidation compared with
Yangmai-5. They proposed that the total antioxidant capacity might play an important role in
wheat plant Al-tolerance. Although the expression levels of glutathione reductase (GR) and cy-
tosolic-like and glutathione peroxidase 6 (TDFs #164-1 and 217-2) did not differ between 2.5
and 20 uM B-treated roots under Al-stress, the mRNA level of gene encoding glutathione S-
transferase (GST) zeta class-like isoform X1 (TDF #78-4) in +Al roots was higher under 20 uM
B than under 2.5 uM B (Table 1). Houde and Diallo [25] observed that GST expression level
was higher in Al-tolerant than Al-sensitive wheat roots, concluding that GST might play a role
in the detoxification of Al and ROS. Ezaki et al. [62] showed that overexpression of GST in
transgenic Arabidopsis plants conferred tolerance to both Al and oxidative stresses. Thus, the
observed higher expression level of GST in +Al roots under 20 uM B compared with under

2.5 uM B might enhance the tolerance of plants to Al.

Thioredoxins (Trxs) play a key role in redox balance regulation through thiol-disulfide ex-
change reactions [63]. Zhang et al. [64] found that transgenic rice plants overexpressing
OsTRXh1 (a subgroup I h-type Trx in rice) accumulated less H,O, under salt stress, whereas
more H,0, was accumulated in the extracellular space of OsTRXh1 knockdown plants com-
pared with wild-type plants, demonstrating that OsTRXh1 might play an important role in
Trx-associated redox state regulation and plant stress responses. Lemaire et al. [65] showed
that the expression of Trxs m and h in Chlamydomonas reinhardtii cells was induced by heavy
metals such as Cd and Hg, concluding that Trxs was involved in defense mechanisms against
heavy metals. Our results showed that the expression of Trx m-type 4 (TDF #60-1) was induced
by Al-toxicity only in 20 uM B-treated roots (Table 1), suggesting that Trx m-type 4 might play
arole in enhancing Al-tolerance by alleviating Al-induced oxidative stress under 20 uM B.

2-Alkenal reductase (AER) catalyzes the reduction of the a,B-unsaturated bond of 2-alke-
nals to produce n-alkanals. Transgenic tobacco plants overexpressing Arabidopsis AER dis-
played improved tolerance to photooxidative stress [66]. Recently, Yin et al. [67] showed that
the suppression of lipid peroxide-derived aldehydes by AER provided an efficient defense
mechanism against Al-toxicity. Thus, the Al-induced increase in root expression level of gene
encoding 2-alkenal reductase (NADP"- dependent)-like (TDF #243-1, Table 1) might contrib-
ute to plant Al-tolerance by the detoxification of reactive carbonyls.

Heat shock proteins (HSPs)/chaperones have been known to play a key role in protecting
plants against stress. Our results showed that root expression of gene encoding putative chaper-
one DnaJ-domain superfamily protein (TDF #178-1) downregulated in response to Al-toxicity
under 2.5 pM B, and did not change under 20 uM B, and its expression level in +Al roots was
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higher under 20 uM B than under 2.5 uM B (Table 1), indicating that chaperones might play a
role in B-induced alleviation of Al-toxicity.

Al-toxicity inhibits root growth by damaging the roots functionally and structurally, which
consequently decreases water uptake, eventually resulting in dehydration stress in plant roots
[40]. Consequently, the expression of some dehydration stress-related genes might be induced
in Al-treated roots. As expected, root dehydration responsive protein (TDF #83-5) was strongly
induced by Al-toxicity regardless of B concentration in the nutrient solution (Table 1). In addi-
tion, root expression level of gene encoding adenine nucleotide alpha hydrolases-like super-
family protein (TDF #219-3), a universal stress protein-like, was upregulated by Al-toxicity
(Table 1). These data indicated that the two genes might play a role in plant Al-tolerance.

To conclude, our data demonstrated that in addition to enhancing the total ability to scav-
enge ROS, other mechanisms (i.e., ARE and chaperone DnaJ-domain superfamily protein)
might be involved in B-induced alleviation of Al-toxicity.

Genes related to autophagy and senescence

Autophagy is a process of self-degradation of cellular components including protein and or-
ganelle in a molecule degradation process in which cells recycle cytoplasmic nutrients and
other cellular components when under stress conditions or during developmental transitions.
This process can help plants to adapt the changing environment [68]. RNAi-AtATG18a trans-
genic Arabidopsis plants usually senesce earlier and are more sensitive to a variety of stressful
conditions such as drought, salt and oxidative stresses compared with wild-type plants [68,69].
The observed lower expression level of autophagy 18H-like protein (TDF #158-1, Table 1) im-
plied that root autophagy might be damaged by Al-toxicity, hence lowering plant Al-tolerance.
However, B-induced alleviation of Al-toxicity can not be explained in this way, because the
gene expression level in Al-treated roots kept unchanged regardless of B concentration in the
nutrient solution (Table 1).

Senescence is a form of programmed cell death (PCD) and many senescence-associated
genes (SAGs) have been identified in plants [70]. Al-toxicity results in premature cell matura-
tion and senescence in plants [71]. Zhan et al. [72] showed that Al-induced PCD was promoted
by AhSAG, a senescence-associated gene in peanut (Arachis hypoganea). Transgenic tobacco
plants overexpressing AhSAG displayed lower ability of Al-tolerance than in antisense trans-
genic plants. In this study, we isolated nine differentially expressed TDFs encoding putative se-
nescence-associated proteins (i.e., TDFs #2-1, 5-3, 139-8, 156-3, 141-7, 209-1, 217-1, 219-2 and
223-1). Their expression levels increased, decreased or kept unchanged in response to Al-toxic-
ity depending on B concentration (Table 1), indicating that the whole progression of senes-
cence in +Al roots was disturbed.

Protein degradation is the main biochemical process that occurs during plant senescence.
Senescence associated proteases not only are involved in nutrient recycling, but also are in-
volved in the regulation of the senescence process [73]. Differentially expressed SAGs isolated
in our study, which participate in cellular protein degradation processes, included: cysteine pro-
teinase 15A-like (TDF #176-9), aspartic proteinase-like protein 1-like (TDF #246-9), serine-type
peptidase (TDF #87-3), ubiquitin carboxyl-terminal hydrolase 22-like (TDF #179-4) and ubi-
quitin receptor RAD23c-like (TDF #78-2). Root expression levels of these genes decreased or
did not significantly change in response to Al-toxicity regardless of B concentration in the nu-
trient solution except that ubiquitin carboxyl-terminal hydrolase 22-like expression in 20 uM
B-treated roots was upregulated by Al-toxicity (Table 1). These data also support above infer-
ence that the whole progression of senescence in +Al roots was disturbed.
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Genes related to signal transduction and hormone

Calmodulin, together with other calcium (Ca)-binding proteins, has been suggested to partici-
pate in heavy metal signaling by binding to Ca** [74]. Transgenic tobacco plants expressing a
calmodulin-binding tobacco plasma membrane protein gene (designated NtCBP4, for N. taba-
cum calmodulin-binding protein) displayed enhanced Ni tolerance [75]. Okekeogbu et al. [76]
observed that several Ca-binding proteins were induced in Al-treated tomato (Solanum lyco-
persicum) radicles, concluding that Ca-binding proteins might play a role in enhancing tomato
plant tolerance to the secondary cellular stresses induced by Al-stress. Generally speaking, root
expression levels of putative Ca-binding protein CML19-like (TDFs #19-4 and 19-5) were
higher under 20 uM B than under 2.5 uM B regardless of Al concentration in the nutrient solu-
tion. This might related to the fact that the ameliorative effect of 20 uM B was better than that
of 2.5 uM B.

Protein phosphorylation, a versatile post-translational modification (PTM), is involved in
response to various environmental stresses including heavy metals (i.e., Mn, Cu, Cd and Al)
[38,74,76,77]. Jonak et al. [77] showed that different kinase belonging to the MAPK family in
alfalfa roots were induced by excessive Cd and Cu. Okekeogbu et al. [76] reported that MAPK
was strongly induced in Al-treated tomato radicles. Zhou et al. [38] observed that Mn-toxicity
decreased the expression levels of genes associated with phosphorylation except for enhanced
expression of a MAPK 1 gene in C. grandis leaves. Our results showed that all these differential-
ly expressed genes [i.e., protein kinase 2B (TDF #89-2), MAPK (TDF #25-3), probable receptor-
like protein kinase At5¢g47070-like isoform X1 (TDF #140-2) and SRSF protein kinase 1-like iso-
form I (TDF #246-3)] involved in phosphorylation were downregulated or not significantly af-
fected by Al-toxicity depending on B supply and the kinds of protein kinase. Thus,
phosphorylation of some proteins might be impaired in +Al roots. Like protein kinase, the
transcript level of a gene [i.e., protein phopsphatase 2C (PP2C, TDF #51-15)] involved in de-
phosphorylation decreased or did not change in response to Al-toxicity depending on B supply
(Table 1). This agrees with our previous report that the expression of putative protein phospha-
tase 2a, regulatory subunit was downregulated by Mn-toxicity in C. grandis leaves [38].

Tetraspanins, also called tetraspans or the transmembrane 4 superfamily (TM4SF), contain
four transmembrane domains linked by a small outer loop (EC1), a larger outer loop (EC2)
and a small inner loop (IL) and are involved in signaling pathways [78,79]. Root expression
level of tetraspanins-8-like did not differ among B and Al combination except for a significant
increase under 2.5 pM B + 0 mM Al (Table 1).

COP9 signalosome (CSN) complex, composing of eight subunits named CSN1 to CSN8 ac-
cording to protein size, plays a role in diverse plant signaling pathways and developmental pro-
cesses through regulating protein ubiquitination and degradation [80,81]. For example, RNA
silencing of the Arabidopsis CSN5 subunit led to decreased auxin signaling. Gusmaroli et al.
[80] observed that mutations in CSN5A caused a pleiotropic dominant negative phenotype,
concluding that CSN“*N>* was the major player in the derubylation of Arabidopsis Cullinl. As
shown in Table 1, the expression of COP9 signalosome complex subunit 5A (CSN5A; TDF
#138-6) was upregulated in -Al roots and downregulated in +Al roots by 20 uM B, respectively,
and was enhanced in 2.5 uM B-treated roots and decreased in 20 uM B-treated roots by Al
Okekeogbu et al. [76] observed that the abundance of CSN6 was enhanced in Al-treated radi-
cles of seeds derived from Al-treated tomato plants.

Ankyrin repeat-containing proteins, one of the most protein sequence motifs, play a role in
cytoskeleton interactions, mitochondrial, toxins or signal transduction by mediating protein-
protein interactions [82]. Shen et al. [83] observed that ankyrin repeat-containing protein 2A
(AKR2A) played a key role in the biogenesis of A. thaliana ascorbate peroxidase 3 (APX3) by
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binding specifically to a sequence in APX3 (i.e., a transmembrane domain plus a few basic
amino acid residues), concluding that AKR2A was an essential molecular for peroxisomal
membrane-bound APX3. Our results showed that the expression of AKR At3g12360-like gene
was higher in roots treated with 2.5 uM B + 0 mM Al than in other roots (Table 1), meaning
that +Al roots might have lower or similar APX activity compared with -Al roots depending on
B supply. This disagrees with the previous reports that the abundance of APX in wheat roots
[84] and the activities of APX in Allium cepa roots [85] and ‘Cleopatra’ tangerine (Citrus
reshni) leaves [86] increased in response to Al-toxicity. The difference between the expression
level of APX gene and its activity (protein level) in response to Al might be due to PTMs.

WD (also known as Trp-Asp or WD40 or B-transducin) motifs are characterized by a con-
served core of 40-60 amino acids, which usually form a tertiary propeller structure. WD re-
peat-containing proteins participate in a variety of cellular processes including signal
transduction, vesicular trafficking, transcriptional regulation, apoptosis, cytoskeletal dynamics,
ribosomal RNA biogenesis, and cell cycle control [87-90]. Mishra et al. [91] found that a
SiWD40 identified from foxtail millet, whose promoter interacted with the dehydration re-
sponse element, was induced by various stresses such as salinity, dehydration and ABA, con-
cluding that WD40 proteins might play a role in stress tolerance of foxtail millet. Lee et al. [92]
demonstrated that a WD40 protein from Brassica napus might play a role in salt stress through
ABA-dependent and/or -independent signaling pathways. Thus, Al-induced upregulation of
WD repeat-containing protein 26-like isoform X1 (TDF #87-7) in 2.5 uM B-treated roots might
be involved in Al-tolerance.

Hormones are involved in plant Al-toxicity [93-95]. As shown in Table 1, IAA-amino acid
hydrolase ILR1-like 4-like (TDF #178-5) expression was detected only in 20 uM B + 1.2 mM
Al-treated roots. Chen et al. [96] reported that IAA-amino acid hydrolase ILR1-like 3 was in-
duced in Hg-stressed rice roots. IAA-amino acid hydrolase ILR1, which was initially isolated in
A. thaliana, releases active IAA from conjugates through cleaving IAA-amino acid conjugates
[97]. Thus, free IAA level might be enhanced in 20 uM B + 1.2 mM Al-treated roots. This
agrees with the report that Al treatments led to accumulation of endogenous IAA in wheat
roots [96]. Zhou et al. [95] observed that IAA level increased in the base of the root and de-
creased in the root tips of 100 uM Al-treated alfalfa. Agami and Mohamed [98] reported that
IAA pretreatment alleviated Cd-toxicity in wheat seedlings through enhancing the activities of
antioxidant enzymes. Therefore, Al-induced expression of IAA-amino acid hydrolase ILR1-like
4-like in 20 uM B-treated roots might be an adaptive response of C. grandis plants to Al-toxici-
ty. In addition, Yang et al. [94] showed that TAA increased the Al-induced secretion of malic
acid anions from wheat roots. However, Al-induced secretion of malate and citrate did not dif-
fer between 2.5 and 20 uM B-treated C. grandis roots (Fig. 2).

In conclusion, signal transduction and hormone metabolism might be involved in B-in-
duced alleviation of Al-toxicity.

Genes related to gene regulation

As shown in Table 1, 15 TDFs (i.e., TDFs #188-3, 23-1, 138-4, 139-1, 177-3, 27-4, 132-1, 219-4,
177-8, 134-13, 134-4, 246-2, 83-2, 162-5 and 246-5) related to transcriptional regulation was al-
tered by B and Al interactions. Al-induced changes in proteins and genes involved in gene reg-
ulation have also been observed in roots of soybean [99] and Arabidopsis [100].

Plant heat stress transcription factors (Hsfs), which are modular transcription factors, are
involved in protective responses to various environmental stresses such as heat [101], heavy
metals [102,103], and oxidative stress [102]. Shim et al. [103] showed that two orthologs of the
plant class A4 Hsfs conferred Cd-tolerance in wheat and rice by enhancing the expression of
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Cd-tolerance gene, metallothionein. Using a dominant-negative approach, Davletova et al.
[104] demonstrated that Hsfs were important sensors for H,O, and were required at a relative-
ly early stage of the oxidative stress acclimation response. Our results showed that Al treatment
led to increased expression of heat shock factor protein HSF24-like (TDF #23-1) in 2.5 uM B-
treated roots (Table 1). This indicated that Hsfs might play a role in the tolerance of plants to
Al-toxicity. However, this could not explain why the ameliorative effect of 20 uM B was better
than that of 2.5 uM B, because the gene expression level did not differ among roots treated with
25uM B + 1.2 mM Al 20 pM B + 1.2 mM Al and 20 uM B + 0 mM Al (Table 1). In addition,
the expression level of HSF domain class transcription factor (TDF #188-3) did not differ
among four B and Al combinations except for a significant decrease under 20 uM B + 0 mM Al
(Table 1). It appears that the response of Hsfs to Al-toxicity depends on B supply and

Hsf member.

Pentatricopeptide repeat (PPR) proteins are required for a variety of post-transcriptional
processes including RNA editing, RNA splicing, RNA cleavage and translation in plant organ-
elles. Disruption of genes encoding PPR proteins often leads to severe phenotypes [105,106].
Our results showed that root expression of gene encoding putative pentatricopeptide repeat-
containing protein At2g01510-like (TDF #139-1) decreased in response to Al under 2.5 uM B,
and increased under 20 pM B, and that its expression level in +Al roots was higher under
20 uM B than under 2.5 pM B (Table 1), which might contribute to the tolerance of 20 pM B-
treated plants to Al-toxicity. However, the expression of pentatricopeptide repeat-containing
protein (TDF #177-3) was detected only in 2.5 uM B + 1.2 mM Al-treated roots (Table 1).

DNA-directed RNA polymerases catalyze the transcription of DNA into RNA. Our results
showed that root expression of gene encoding DNA-directed RNA polymerase II subunit 1-
like isoform X3 (TDF #27-4) was strongly downregulated by Al under 2.5 pM B and was not
significantly affected under 20 uM B (Table 1), meaning that root transcription might be im-
paired by Al under 2.5 uM B, hence lowering the Al-tolerance of plants.

Al-toxicity leads to a degradation of DNA molecules and an apoptosis-like cell death in
plant roots [85,107]. Shaked et al. [108] demonstrated the role of At5g63950/CHR24, a
RAD26-like gene, in Arabidopsis DNA damage response and recombination. Our results
showed that the expression of gene encoding DNA repair and recombination protein RAD26-
like isoform X3 (TDF #132-1) was detected only in 20 uM B + 1.2 mM Al-treated roots
(Table 1), which might contribute to the Al-tolerance of plants grown under 20 uM
B. However, root expression of gene encoding DNA excision repair protein ERCC-1-like iso-
form X1 (TDF #219-4) was induced by Al-toxicity only under 2.5 uM B (Table 1).

Gag-Pol polyprotein is cleaved by proteases into functional peptides, which have been sug-
gested to be essential for basic replication [109]. Our results showed that root expression of
Gag-pol polyprotein (TDF #134-13) increased in response to Al under 20 pM B, and decreased
under 2.5 M B, and that its expression level in +Al roots was higher under 20 uM B than
under 2.5 uM B (Table 1). This implied that Gag-pol polyprotein might be involved in B-in-
duced alleviation of Al-toxicity.

Genes related to cell transport

Twelve TDFs (i.e., TDFs #175-7, 59-3, 252-1, 141-8, 177-6, 134-5, 19-3, 180-2, 162-4, 78-3,
136-8 and 87-5) associated with cell transport in roots were altered by B and Al interactions
(Table 1). Plant non-specific lipid transfer proteins (nsLTPs) are termed some LTPs which par-
ticipate in the transfer of a broad range of lipids between membranes. Plant nsLTPs have been
shown to play a role in mediating phospholipid transfer and the adaptation of plants to various
environmental conditions [110]. Previous studies showed that root expression level of nsLTP
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(E30131) increased in response to Al-toxicity in Al-tolerant rice cultivar (Azucena), and de-
creased in Al-sensitive one (IR1552) [111], and that root mRNA level of LTPs was higher in
Al-tolerant than in Al-sensitive soybean genotype [21]. The major facilitator superfamily
(MFS), a class of membrane transport proteins, plays a role in plant metal homeostasis [112].
Haydon and Cobbett [113] showed that an Arabidopsis MFS member, Zinc-Induced Facilitator
1 (ZIF1) localized at the tonoplast, was involved in Zn-tolerance, demonstrating that MFS
transporters might influence plant ion homeostasis. In addition, plant MFES transporters, which
belong to the Phtl and Pht4 families, regulate high- and low-affinity inorganic phosphate
transport, respectively [114,115]. Our results showed that genes encoding non-specific lipid-
transfer protein-like protein At2g13820-like (TDF #175-7) and putative MFS protein (TDF
#59-3) were expressed only in 20 pM B-treated roots (Table 1), suggesting that the two genes
might play a role in B-induced alleviation of Al-toxicity.

Citrate binding protein (CBP) is involved in plant vacuolar citrate transport [116]. Our find-
ing that root expression level of citrate-binding protein-like gene (TDF #252-1) increased in re-
sponse to Al-toxicity (Table 1) agrees with our results that Al-toxicity induced the secretion of
citrate from roots (Fig. 2A). Interestingly, Al-induced upregulation of citrate-binding protein-
like gene was lower under 20 uM B than under 2.5 pM B, which could be due to the ameliora-
tion of Al-toxicity by B.

Membrane traffic is required for normal cellular function by which molecules are trans-
ported between organelles in the post-Golgi network [117]. Peiter et al. [118] proposed a mech-
anism for metal tolerance involving membrane trafficking. Our results showed that root
expression levels of genes encoding patellin-2-like, membrane lipoprotein, ADP-ribosylation
factor GTPase-activating protein AGD3-like, Ras-related protein RABA1{-like and protein
transport protein Sec61 subunit alpha-like (TDFs #141-8, 177-6, 162-4, 134-5 and 19-3) in-
creased or kept unchanged in response to Al toxicity depending on B concentration in the nu-
trient solution (Table 1), indicating that the membrane traffic might be enhanced in Al-treated
roots, thus conferring plant Al-tolerance. However, root expression levels of genes encoding
syntaxin-71-like, putative clathrin assembly protein and target of Myb protein 1-like isoform
X1 (TDFs #180-2, 78-3 and 136-8) decreased or did not change in response to Al-toxicity
(Table 1).

Genes related to cell wall modification

Cell wall has been considered as the major site of Al-toxicity [119]. As expected, four TDFs (i.e.
124-1,17-1, 51-1 and 148-1) involved in cell wall modification in roots were altered by B and
Al interactions (Table 1). Our results showed that root expression of gene encoding putative
glycosyl hydrolase family 10 protein (TDF #51-1), a family of glycoside hydrolases, decreased
in response to Al-toxicity under 2.5 uM B and increased under 20 uM B, and that its expression
level in +Al roots was higher under 20 pM B than under 2.5 pM B (Table 1). Duressa et al. [21]
showed that the expression level of gene encoding glycosyl hydrolase family 3 protein/o-glyco-
syl cpds was higher in Al-tolerant than in Al-sensitive soybean genotype. Thus, glycosyl hydro-
lase might be involved in B-induced alleviation of Al-toxicity.

Pectate lyases degrade plant cell walls, causing tissue maceration and death [120]. We found
that the expression of probable pectate lyase 8-like (TDF #124-1) in roots was down-regulated
by Al-toxicity (Table 1), as previously obtained on Al-treated roots of aspen (Populus tremula)
[24], indicating that pectate lyases might play a role in plant Al-tolerance. By contrast, the ex-
pression of gene encoding probable pectinesterase/pectinesterase inhibitor 61-like (TDF #17-1)
was detected only in 2.5 uM B + 1.2 mM Al-treated roots (Table 1), which disagrees with the
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previous report that Al downregulated alfalfa root expression of pectinesterase inhibitor gene
[22].

In conclusion, we demonstrated the alleviation of Al-toxicity by B in C. grandis seedlings.
The alleviation might be associated with relatively little Al transport from roots to leaves
(shoots) rather than through increasing B concentration in roots and leaves, because its con-
centration was higher in +Al roots and leaves than in -Al ones. The molecular mechanisms un-
derlying these processes are only beginning to understand. In this study, we first used the
cDNA-AFLP to investigate the gene expression patterns in C. grandis roots in response to B
and Al interactions, and successfully isolated 100 differentially expressed TDFs including some
novel B-Al interaction responsive genes. B appears to alleviate Al-toxicity in C. grandis roots
by the following several aspects: (a) improving the total ability to scavenge ROS and aldehydes;
(b) increasing the expression levels of genes related to lipid (i.e., carboxylesterases and lecithin-
cholesterol acyltransferase-like 4-like), amino acid (i.e., nicotianamine aminotransferase A-like
isoform X3), S (i.e., thiosulfate sulfurtransferase 18-like isoform X1) and energy (i.e., FNR, root
isozyme 2) metabolisms; and (c) upregulating gene expression related to cell transport (i.e.,
non-specific lipid-transfer protein-like protein At2g13820-like and MFS protein). In addition,
genes related to Ca signal and hormone, gene regulation, and cell wall modification might also
play a role in B-induced alleviation of Al-toxicity. Therefore, our study reveals some novel evi-
dence for the B-induced alleviation of Al-toxicity at the transcriptional level, and increases our
understanding of the molecular mechanisms on B-induced alleviation of Al-toxicity. Our re-
sults also are useful to us for obtaining the key genes responsible for plant Al-tolerance.
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